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Preface
Preface

Especially when an infectious disease is new, mathematical models help to an-
swer the two most important questions: How will the infection spread and what
actions are appropriate and effective to contain it? In order to support local de-
cision makers (health authorities, hospitals and especially municipalities) in plan-
ning their actions, researchers of the Fraunhofer ITWM are working on the epi-
demiological modeling, simulation and decision support of Covid-19 within the
framework of the Fraunhofer Society’s Anti-Corona Program (project name Epi-
DeMSE).
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Integral equation associ-
ated with epidemics

Abstract

We formulate an epidemic model based on an integral equation and identify
common SEIR and dSEIR models as special cases. Different properties of the gen-
eral model, such as the initial development of the epidemic and the infestation,
are described as functions of the integral kernel, and a formula for the reproduc-
tion number is given. This provides a common basis for comparing the SEIR and
dSEIR models. Although the model parameters can be chosen such that the SEIR
and dSEIR models agree with respect to certain aspects concerning initial growth
and final infestation, they are different in general. We choose two reasonable
methods of parameter identification for a comparison by means of analytical and
numerical methods. Finally, we demonstrate that the resulting reproduction rates
depend on the chosen epidemic model.

Introduction

A first mathematical model for the spread of smallpox was established as early
as 1766 by Daniel Bernoulli [Ber60]. It already represented the archetype of
the compartment-based models which divide the population into groups de-
fined according to their current state of health. The models in their present
form date back to the so-called SIR model by Kermack and McKendrick [KW27]
from 1927, where the population is split into susceptible (S), infectious (I) and
recovered/removed (R) individuals. The exchange between the compartments
is modeled by means of balance differential equations with transfer rates. An
improvement are the so-called SEIR-models where the compartment of exposed
(E) is added, to take account of the latency between infection and outbreak of
the disease. Such models and variations thereof are well established. A good
overview is presented in [Het00]. Closely related to these models are the dSEIR-
models using time delays instead of transfer rates, leading to delay differential
equations, see [Coo67, Het95, Het00, EB01, KK03, YL06, BB11, RA12]. Such
models better reflect the real individual course of the disease.

In this work, we present and discuss an integral equation model which gener-
alizes both types of models mentioned above, the SEIR-models as well as the
dSEIR-models. Depending on the choice of the integral kernel, the integral equa-
tion model is shown to be equivalent to any of these models. As it turned out,
this integral equation model for the more special case of a constant infection
rate was already formulated in the paper by Kermack and McKendrick [KW27] in
1927 where the classical SIR model was derived as a special case. In [BDdG+12] it
is pointed out that although this paper has become a classic in theoretical biology
and has been cited countless times as the forefather of the SIR model, the much
more general integral equation model formulated there is hardly known.

The main feature of such integral models is that the infectious activity of individ-
uals can depend on the time since infection in any way described by the integral
kernel. In order to enable the modelling of a real epidemic where contact rates
change, e. g. due to political measures, we have additionally introduced a possi-
bly non-constant infection rate.
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Integral equation associated with epidemics

In principal, any epidemic dynamics driven by infections only, allows for a descrip-
tion in terms of an integral equation

s′(t) =

∫ ∞
−∞

k(t, t′) s′(t′) dt′ , s(−∞) = 1 (s′ := d/dt s) , (1)

with s(t) = S(t)/Sall being the proportion of the number S(t) of never infected
individuals, usually called the susceptible, at time t. Sall is the absolute number
of all individuals under consideration. The kernel k(t, t′) is the rate by which
individuals at time t are infected by individuals which themselves have been in-
fected at time t′. Of course, k(t, t′) ≥ 0 for all (t, t′), k(t, t′) = 0 if t < t′ and
s(t) ∈ [0, 1] ∀ t ∈ (−∞,∞).

An important quantity of the epidemics dynamics, which is intuitive to grasp, is
the reproduction number

R(t′) =

∫ ∞
−∞

k(t, t′) dt , (2)

the mean total number of individuals being infected by a single individual which
itself has been infected at time t′ (note that integration is now with respect to t,
not t′).

Integral equation model

Although k is a real existing quantity of any epidemic, it cannot usually be mea-
sured directly. The same is true for R. At the same time k cannot be uniquely
reconstructed from the knowledge of s(t). Therefore, and in order to get a us-
able model, we split k(t, t′) into a factor γ(t) and a convolution factor Θ(t− t′).
For example, the first could be considered as the factor that reflects current social
contact behavior, while the second would reflect the characteristic and time-
invariant course of disease. Thus, we use

k(t, t′) := s(t) γ(t) Θ(t− t′) (3)

with γ(t), Θ(t) ≥ 0 for all t and Θ(t) = 0 if t < 0. We also assume that∫∞
−∞Θ(τ) dτ exists and finally obtain the integral equation model (iS)

s′(t) = s(t) γ(t)

∫ ∞
−∞

Θ(t− t′) s′(t′) dt′ =: −γ(t) s(t) i[s](t) . (4)

In consequence the expression for the reproduction number becomes

R(t′) =

∫ ∞
−∞

s(t) γ(t) Θ(t− t′) dt . (5)

Assuming Θ to be non trivial, i. e. non vanishing and γ(t) > 0 everywhere, the
solutions of equation (4) have the following important property:
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If there is some t0 such that s′(]−∞, t0]) < 0, then s′(]−∞,∞]) < 0.

This can easily be proven, using s(−∞) = 1 and showing that the interval I with
s′(I) > 0 is open and closed at the same time, which follows from the continuity
of s′ and the positiveness of γ(t)Θ(t − t′). In the sequel we will study (some of)
the further properties of this model and identify the well known SEIR and dSEIR
models as special cases. This also facilitates our subsequent comparison of the
latter.

SEIR and dSEIR models

To formulate these models, we use s(t), e(t), i(t), r(t) to denote the time de-
pendent proportion of susceptible, exposed, infectious and recovered expressed
as ratios of the total population. Of course,

s(t), e(t), i(t), r(t) ∈ [0, 1] ∀ t ∈ (−∞,∞) (6)

and s(t) + e(t) + i(t) + r(t) = 1 ∀ t ∈ (−∞,∞) , (7)

which means that the evolution of (s, e, i, r) takes place within the standard
simplex of 4-space. Then, the SEIR model is given by the ODE

s′(t) = −γ(t) s(t) i(t) (8)

e′(t) = −s′(t)− σ e(t) (9)

i′(t) = σ e(t)− α i(t) (10)

r′(t) = α i(t) (11)

with γ(t) > 0, σ > 0, α > 0. Accordingly, the dSEIR model can be written in
terms of the DDE

s′(t) = −γ(t) s(t) i(t) (12)

e′(t) = −s′(t) + s′(t− τe) (13)

i′(t) = −s′(t− τe) + s′(t− τi) (14)

r′(t) = −s′(t− τi) . (15)

Integrating eq. (14) (with i(t → −∞) = 0) and inserting this into eq. (12) yields
the equivalent single equation formulation of the dSEIR model:

s′(t) = −γ(t) s(t) (s(t− τi)− s(t− τe)). (16)

Obviously, we allowed for a non constant γ(t), while treating σ and α as con-
stants, which directly fits to our choice of the integral kernel, eq. (3).

Now, both the dSEIR-model and the SEIR-model can be identified as special cases
of the iS model (4) if we use

ΘdSEIR(τ) =

{
1 if τe ≤ τ ≤ τi
0 else

(17)

ΘSEIR(τ) =
σ

σ − α

(
exp(−ατ)− exp(−στ)

)
(18)
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Fig. 1: Examples of convo-
lution kernels for SEIR and
dSEIR models.

as convolution kernels. Thereby, ΘdSEIR is obvious from eq. (16), whereas ΘSEIR

is derived from equations (9) and (10) by means of the variation of constants
formula, treating s′(t) as inhomogeneity.

It is also interesting to note that in case of γ(t) = const. the SEIR model allows
for an invariant: Summation of equations (8)-(10) results in

s′(t) + e′(t) + i′(t) + αi(t) = 0 . (19)

Now, replacing i(t) by means of equation (8) and integrating yields

s(t) + e(t) + i(t)− α

γ
ln s(t) = const. = 1 ∀t (20)

where the constant is given by means of the initial conditions.

Initial stage of epidemics

In reality epidemics start at a finite time with an integer number of infected indi-
viduals. In the homogenized integral equation model this must be be substituted
by an infinitesimal small initial growth starting at “t = −∞”. Thus, in order to
investigate the initial growth of the epidemics, we linearize the integral equation
(4) at s(t) = s(−∞) = 1 and assume a constant γ. We get

s′(t) = γ

∫ ∞
−∞

Θ(t− t′) s′(t′) dt′ . (21)

Inserting the ansatz s(t) = 1− s0 exp(λt) yields the characteristic equation

PiS(λ) := λ
(
γ

∫ ∞
0

Θ(τ) exp(−λτ) dτ − 1
)

= 0 , (22)

being defined where the integral exists. Its non trivial solutions (λ 6= 0) are given
by the roots of the second factor. Using λ = η + iω its real part becomes

γ

∫ ∞
0

Θ(τ) cos(ωτ) exp(−ητ) dτ − 1 = 0 . (23)

For all τ > 0, the weight exp(−ητ) is strictly decreasing with respect to η and
maps η ∈ [0,∞[ onto ]0, 1]. Therefore, in case ω = 0 we conclude that there
exists a positive real eigenvalue λ = η0 > 0 if and only if

γ

∫ ∞
0

Θ(τ) dτ > 1 . (24)
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which is at the same time necessary for the growth of the epidemic. We also
deduce that η0 > 0 is the only positive real eigenvalue. In case ω 6= 0 we conclude
that η < η0 since cos(ωτ) < 1 except for isolated points. Thus, as t → −∞,
the associated solutions are decaying more slowly than the one belonging to
η0. Therefore, the presence of such oscillating solution components would imply
s(t) < 0 for some t sufficiently close to −∞ which is ruled out by equation (6).
Finally, this shows that the initial growth is given by the unique (up to s0) solution

sinitial(t) = 1− s0 exp(η0t) . (25)

Applying equations (18) and (22) we obtain the characteristic equation of the
SEIR model

PSEIR(λ) = λ

(
γσ

(α+ λ)(σ + λ)
− 1

)
= 0 (26)

with the solution

η0 =
(√

(σ + α)2 + 4σ(γ − α)− (σ + α)
)
/ 2 , (27)

which is real, since (σ + α)2 + 4σ(γ − α) = (σ − α)2 + 4σγ ≥ 0. Moreover,
η0 > 0 if and only if γ > α, which is the condition that allows for the growth of
the epidemic.
Application of equations (17) and (22) yields the characteristic equation for the
dSEIR model

PdSEIR(λ) = γ
(
exp(−τeλ)− exp(−τiλ)

)
− λ = 0 . (28)

We deduce from the discussion above, that there is a single real positive solution
η0 > 0 if and only if γ(τi − τe) > 1. In summary, we have seen that epidemics
can arise and grow if and only if

γ > α (SEIR model) (29)

γ > 1/(τi − τe) (dSEIR model) (30)

and the initial growth is then given by (25).

Final stage of epidemics

Assuming that the contact rate is constant for all t > t0, we can expect that s(t)
tends to some limit value s∞, reflecting the final infestation. Reformulating the
iS model, i. e. equation (4), we get:

s′(t)

γ(t) s(t)
=

∫ ∞
−∞

Θ(t− t′) s′(t′) dt′

=

∫ ∞
−∞

Θ′(t− t′) s(t′) dt′ .
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Integrating between t0 and t1 gives∫ t1

t0

s′(t)

γ(t) s(t)
dt =

∫ ∞
−∞

Θ(t1 − t′) s(t′) dt′

−
∫ ∞
−∞

Θ(t0 − t′) s(t′) dt′

=

∫ ∞
−∞

Θ(τ) s(t1 − τ) dτ

−
∫ ∞
−∞

Θ(τ) s(t0 − τ) dτ .

This can be used to predict the limit s∞ := s(t → ∞) if we assume s(t) to be
known for t < t0 and γ = const. for t > t0. Sending t1 →∞ we conclude that

0 = ln s∞ − ln s(t0)− s∞ γ
∫ ∞

0
Θ(τ) dτ

+ γ

∫ ∞
0

Θ(τ) s(t0 − τ) dτ =: f(s∞) . (31)

Since f ′′(s) = −1/s2 < 0, f(s→ 0+) = −∞ and

f(s(t0)) = γ

∫ ∞
0

Θ(τ)
(
s(t0 − τ)− s∞

)
dτ

> γ

∫ ∞
0

Θ(τ)
(
s(t0)− s∞

)
dτ > 0 (32)

there exists one and only one solution s∞ of (31) which, moreover, can be written
in terms of the Lambert W-function. If we even assume γ to be constant for all
times, we may deduce

ln s∞ = (s∞ − 1) γ

∫ ∞
0

Θ(τ) dτ (33)

by sending t0 → −∞ and using s(t→ −∞) = 1. Since∫ ∞
0

ΘSEIR(τ) dτ =
1

α
(34)∫ ∞

0
ΘdSEIR(τ) dτ = τi − τe (35)

the application of equations (31) or (33) to SEIR and dSEIR models is obvious.

In summary, while maintaining the present infection rate and knowing the previ-
ous course of the disease, equations (31) or (33) make it possible to predict the
final infestation. Thereby, equation (31) clearly shows that even with the same
future infection rate, different disease courses in the past usually lead to different
final infestations.

Reproduction number R

As already mentioned above, the defining formula for the reproduction number
R is

R(t′) =

∫ ∞
−∞

s(t) γ(t) Θ(t− t′) dt . (36)
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If γ(t)s(t) := γs = const. this simplifies to

RdSEIR = γs(τi − τe) = const. (37)

RSEIR = γs/α = const. . (38)

However, if γ(t)s(t) 6= const. these formulas provide an approximation only.

In real applications to ongoing epidemics, γ(t) is usually unknown and definition
(5) is therefore not applicable. However, making use of equation (4), it is possible
to compute R in terms of s(t) and Θ(τ) alone by means of

R(t) =

∫ ∞
0

Θ(τ) s′(t+ τ)∫∞
0 Θ(τ ′) s′(t+ τ − τ ′) dτ ′

dτ . (39)

This formula clearly shows that for a given course of the epidemic, the calculated
reproduction figures depend on the chosen integral kernel, i. e. on its projectiva-
tion only, since multiplication with a non zero constant doesn’t affect the result.

Comparison of SEIR and dSEIR models

The SEIR and dSEIR models are represented by families of integral kernels, which
are described by two parameters each (α, σ and τi, τe, resp.). Also the transfer
rate γ(t) can be freely selected. However, no matter how the parameters are cho-
sen, the kernels are different. This means that the parameters cannot be adjusted
such that the two models will produce the same results in general. Agreement
can only be reached on some aspects.

In the sequel we present two methods of comparison:

(1) Method (1) is to adjust the parameters of the SEIR and the dSEIR model such
that the (infinitesimal) initial growth coincides with respect to the exponential
growth rate η0 and all ratios s(t) : e(t) : i(t). (Due to equation (7), r(t) can be
ignored.) However, this will lead to markedly different results at later times t
including a different final infestation.

(2) Method (2) (alt. appr.) is to demand equality of η0, the ratios s(t) : i(t) and
the final infestation s∞.

Adjusting the solutions

Here we describe in more detail how the two models are adjusted in case of
method (1) and method (2), respectively.

In both cases, SEIR and dSEIR, we extend the initial solution (25) to all variables
s, e, i, r and write

u(t) = u−∞ + u0 exp(η0t) , (40)
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using the definitions

u(t) :=


s(t)
e(t)
i(t)
r(t)

 u−∞ :=


1
0
0
0

 u0 :=


−(1− s0)

e0

i0
1− s0 − e0 − i0

 . (41)

Thereby we have to assume e0 > 0, i0 > 0 and 1 − s0 − e0 − i0 = r0 > 0 (see
conditions (6) and (7)).

Now, regarding the dSEIR model, we use equations (4),(7), (12-15) and (16) to
express the initial solution, i. e. u0, in terms of the model parameters (γ, τe, τi)
and some amplitude s0 ≤ 1. (Choosing s0 is equivalent to a shifting of time). We
get

u0 = (1− s0)


−1

1− exp(−η0τe)
exp(−η0τe)− exp(−η0τi)

exp(−η0τi)

 . (42)

and define a mapping U0(η0, τe, τi, s0) := u0. We have already seen, that when
solving the characteristic equation η0 becomes a function of the parameters
γ, τe, τi, i.e. η0 =: Λ0(γ, τe, τi).

Next, we compute the parameters of the SEIR model in terms of u0 and the
growth rate η0, which, by definition, is an eigenvalue of the system matrix

A =


0 0 −γ 0
0 −σ γ 0
0 σ −α 0
0 0 α 0

 (43)

with respect to the eigenvector u0. The eigenvalue equation

Au0 = η0 u0 (44)

may be reformulated as a system of linear equations for the unknown parameters
(γ, σ, α). Its unique solution (e0, i0 > 0) is:

γ =
1− s0

i0
η0 (45)

σ =
1− s0 − e0

e0
η0 (46)

α =
1− s0 − e0 − i0

i0
η0 (47)

Setting Π(η0, u0) := (γ, σ, α, s0) defines a mapping from the growth rate and
the state vector of the system at t = 0 to the parameters realizing that growth
rate and state. Combining the two mappings defines a mapping of the param-
eters defining the dSEIR model to those defining the SEIR model, such that the
initial epidemic developments of both models agree. It is given by means of the
composition

(γ, σ, α, s0) = Π(Λ0(γ, τe, τi), U0(Λ0(γ, τe, τi), τe, τi, s0)) . (48)
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Fig. 2: Equal Analytic solu-
tions for the SEIR and dSEIR
models (method (1), initial
stage).

Fig. 3: Final infestation e+ i+r
(SEIR and dSEIR, method (1)).

We remark, that the mapping leaves the parameter γ unchanged, since equations
(8) and (12) agree. This already defines method (1) of comparison of the two
models.

For method (2) we omit the equality of e(t) (i. e. e0) during the initial growth.
Instead we demand the equality of the final infestations s∞ := limt→∞ s(t). This
means that we set α−1 = τi − τe (see equations (33), (34) and (35)). However,
since the procedure is very similar to that for method (1) we will not present
the further details. At this place we want to note, that if we want γ to be a real
quantity (i. e. the infectious rate, most likely), then it should be the same for both
models. This immediately implies (see equations (8) and (12)) that s(t) coincides
if and only if i(t) coincides. At the same time r(t) cannot be freely chosen, due
to condition (7). Thus, we can only give up the equality of e(t), because, if we
renounce the equality of one more variable, then we renounce the equality of all
four variables.

An example where the two models are adjusted according to method (1) is
demonstrated in figures (2) which totally coincide. However, as already men-
tioned, the disadvantage of this method is that it usually produces large differ-
ences in the final infestation. This is shown in figure (3) which is a level plot of
the final infestation in dependence of the initial solution given by means of the
ratios r0/i0 and e0/i0 (which are enough for it to be determined). An example
where the two models are adjusted according to method (2) is demonstrated in
figures (4). Now, only i(t) and s(t) = 1− e(t) + i(t) + r(t) are the same, but e(t)
is different. However, this time s∞ coincides by definition.
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Fig. 4: Analytic solutions for
the SEIR and dSEIR models
(method (2), initial stage).

Fig. 5: Numeric solutions
for SEIR and dSEIR models
(method (1)).

Comparing numerical solutions

The more the epidemics develops, the more the nonlinearity in equations (8), (12)
or (16) plays a role. Therefore, in order to determine the development during its
entire duration, we use numerical integration routines of Matlab. Figures (5)
and (6) show an example of comparing the models according to method (1)
and method (2), respectively. As we see the numerical solutions resemble the
analytic solution very well during the initial stage. However, at later times the
SEIR model shows a higher but slightly delayed peak of infestation. Moreover,
method (1) yields different final infestations s∞ in the SEIR and the dSEIR case.

Fig. 6: Numeric solutions
for SEIR and dSEIR models
(method (2)).
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Fig. 7: Numeric solutions
with γ-jump: γ = 0.4 → 0.2
(method (1)).

Fig. 8: Numeric solutions
with γ-jump: γ = 0.4 → 0.2
(method (2)).

An analogous comparison, however with a jump from γ = 0.4 down to γ = 0.2
after t = 30 days is shown in figures (7) and (8), repectively. The associated plot
of the reproduction numbers R(t) together with the respective integration ker-
nels is shown in figures (9) and (10), respectively. Note the differences between
the exact values according to formula (5) and the approximations according to
formulas (38) which are shown in dotted lines.

Conclusion

We presented a general integral equation model which is used as a framework
to compare epidemic models based on cohorts such as the SEIR and the dSEIR
models. Moreover, the integral equation model allows for a uniform definition of
the reproduction number.

Fig. 9: Reproduction numbers
with γ-jump: γ = 0.4 → 0.2
(method (1)).
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Conclusion

Fig. 10: Reproduction num-
bers with γ-jump: γ = 0.4 →
0.2 (method (2)).
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Eigenvalues of the dSEIR
model

A. Eigenvalues of the dSEIR model

We will deduce some information about the number and position of eigenvalues,
i.e. the zeroes of f in the complex half plane Reλ > 0.

On any compact set Ω ⊂ R2 which is diffeomorphic to the 2-disc with f |Ω−1(0) ⊂
int(Ω) and f twice differentiable the following index formula holds

Σλ∈f |Ω−1(0)ind(f , λ) = deg(f |Ω) = 1 + (#I −#E)/2 , (49)

with I and E being the set of interior and exterior tangencies, respectively.
Thereby, the set of tangencies is T ⊂ ∂Ω consists of the zeroes of the (outer)
normal component of f and I and E are the subsets where the derivative of this
component in the direction of f is negative or positive, respectively. In case it
is zero, we demand the zero to be a transversal one, which at the same time
implies that I and E are finite sets. The formula then relates the numbers of
interior and exterior tangencies on ∂Ωr to the indices ind(f , λ) of the zeroes of f
in Ωr counted with their multiplicity each. Since f is holomorphic, the latter are
positive numbers, i.e. ind(f , λ) ∈ N = {1, 2, . . . }. Moreover, in the generic case,
the zeroes are of first order which implies ind(f , λ) = 1.

Rescaling the time, we may assume γ = 1 and the characteristic equation of the
dSEIR model becomes

f(λ) = λ+ exp(−τiλ)− exp(−τeλ) (50)

which simplifies the notation.

In the following, we often separate the real and imaginary parts, using λ = η+iω
and f(λ) = u(η, ω) + i v(η, ω). Accordingly, f can be considered as a function
f = (u, v) : R2 → R2, (η, ω) 7→ (u(η, ω), u(η, ω)) on 2-space. Let Ωr = {(η, ω) ∈
R | η > 0, η2 + ω2 ≤ r2} with the two corners being suitably smoothed (later on
it will show up what this means).

Choosing r > 2 implies | exp(−τiλ) − exp(−τeλ)| ≤ 2 on Ωr. Therefore, f
obviously points outwards everywhere on the half circle ∂Ωr \ ({0}×R) and thus
has no tangencies or zeroes there. Thus, they can only occur on ∂Ωr∩({0}×R) =
{0} × [−r, r] as a subset of the zero set Z of u(0, .) on the imaginary axis. Since
on the imaginary axis f = (u, v) (s. above) becomes

u(0, ω) = cos(τiω)− cos(τeω)

= −2 sin

(
τi + τe

2
ω

)
sin

(
τi − τe

2
ω

)
(51)

v(0, ω) = ω − sin(τiω) + sin(τeω) (52)

the zero set Z of u(0, .) is discrete and given by

Z =
2π

τi + τe
Z ∪ 2π

τi − τe
Z . (53)

The index formula only applies if f has no zeroes on ∂Ωr, which means that v(0, .)
must not have zeroes on Z ∩ [−r, r]. However, we have v(0, 0) = u(0, 0) = 0.
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Generically this is true except for the zero at (0, 0). Otherwise, this can be over-
come by means of of arbitrarily small changes of τi or τe.

Generically, all zeroes are of first order, however there also might occur double
zeroes. According to our discussion above, they will not contribute to I or E and
can be ignored. Thus, I ∪ E = {0} × Z1

r with Z1
r denoting the subset of first

order zeroes in Z ∩ [−r, r]. W. l. o. g. we may use a numbering

Z1
r = {ωk | k = −K,−K + 1, . . . ,K − 1,K} (54)

with ωk−1 < ωk and ω0 = 0 and observe that At this point we can already
calculate R in caseω−k = ωk. Moreover, we deduce that the zero crossings are
alternating, more precisely

sign(∂ωu(0, ωk)) = (−1)k−1sign(ωk) . (55)

Now we use that

ωk ∈ I ⇔ sign(∂ωu(0, ωk)) sign(v(0, ωk)) > 0

ωk ∈ E ⇔ sign(∂ωu(0, ωk)) sign(v(0, ωk)) < 0 (56)

according to the definition. Since

∂ωu(0, ωk) =

{
−(τi + τe) sin(τiωk) if ωk ∈ 2π

τi−τeZ

−(τi − τe) sin(τiωk) if ωk ∈ 2π
τi+τe

Z
(57)

v(0, ωk) =

{
ωk if ωk ∈ 2π

τi−τeZ

ωk − 2 sin(τiωk) if ωk ∈ 2π
τi+τe

Z
(58)

we observe that

∂ωu(0, ω−k) = −∂ωu(0, ωk) (59)

v(0, ω−k) = −v(0, ωk) (60)

ωk > 0, sign(∂ωu(0, ωk)) = 1 ⇒ sign(v(0, ωk)) = 1 (61)

whereas in case sign(∂ωu(0, ωk)) = −sign(ωk) the conclusion is more compli-
cated. To this end we define

K− = {k | 0 < k ≤ K, sign(v(0, ωk)) = −1} (62)

χ(k) =

{
1 k ∈ K−

0 else
(63)

Finally, we are ready to compute

#I −#E =
K∑

0 6=k=−K
sign(∂ωu(0, ωk)) sign(v(0, ωk))

= 2

K∑
k=1

sign(∂ωu(0, ωk)) sign(v(0, ωk))

= 2
∑

k=1,3,...,K

(
sign(∂ωu(0, ωk)) sign(v(0, ωk)) (64)

+ sign(∂ωu(0, ωk+1)) sign(v(0, ωk+1))
)

= 2
∑

k=1,3,...,K

(
1 · 1 + (−1) · (−1)χ(k)

)
= 4 #K− (65)
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The resulting index formula then serves for the computation of the number of
eigenvalues in the positive half plane by means of:

#(f |Ωr)
−1(0) = Σλ∈(f |Ωr)−1(0)ind(f , λ) = 1 + 2 #K− (66)
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